1's Complement & 2's Complement

Representing signed integers can be done in 3 different schemes:

- 1. Sign Magnitude
- 2. 1's complement &
- 3. 2's complement
- MSB \rightarrow is the sign bit.
- 0 as MSB \rightarrow it is a +ve integer
- 1 as MSB \rightarrow it is a -ve integer

1's Complement

To get 1's complement of a binary number, simply invert the given number.

Binary number	1's complement
000	111
001	110
010	101
011	100
100	011
101	010
110	001
111	000

In the case of negative binary number representation, we represent in 1's complement.

First represent the number with positive sign and then take 1's complement of that number.

Example: Let we are using 5 bits register. The representation of -5 and +5 will be as follows:

+5 is represented as it is represented in sign magnitude method.

-5 is represented using the following steps:

(i)
$$+5 = 0.0101$$

(ii) Take 1's complement of 0 0101 and that is 1 1010. MSB is 1 which indicates that number is negative.

MSB is always 1 in case of negative numbers.

Example-1:	10101110
	01010001
Example-2:	10001.001
	01110.110
Example- 3:	-13 in 8 bit representation

Binary equivalent of +13 → 0000 1101 1's complement of +13 → 1111 0010 → -13 1111 1111 - $00001101 \rightarrow +13$ 1111 0010 → -13

2's Complement

To get 2's complement of binary number take1's complement of given number and plus 1 to the least significant bit (LSB).

Let we are using 5 bits registers. The representation of -5 and +5 will be as follows:

+5 is represented as it is represented in sign magnitude method. -5 is represented using the following steps:

(i) +5 = 0.0101

(ii) Take 2's complement of 0 0101(1's complement \rightarrow 1 1010) and that is 1 1011. MSB is 1 which indicates that number is negative.

MSB is always 1 in case of negative numbers.

Addition & Subtraction using 1's complement notation

Subtractions by 1's Complement:

- Take 1's complement of the subtrahend.
- Add with minuend.
- If the result of above addition has carry bit 1, then add it to the least significant bit (LSB) of given result.
- If there is no carry bit 1, then take 1's complement of the result which will be negative.

11010

Case-1: When Carry bit 1

Evaluate 10101 - 00101

Now,

1's complement of subtrahend : 00101 is

10101

1's complement of 10000 is 01111

Case-2: When no Carry bit: Evaluate 11110 with 11101 1's complement of subtrahend, 11110 is 00011

Now,		11001
	+	00011
	=	11100

Since there is no carry bit 1, so take 1's complement of above result, which will be 00011 and i.e, 00011 is the answer.

Additions by 1's Complement:

Case-1: Addition of positive and negative number when positive number has greater magnitude:

- Find out 1's complement of negative number
- The end-around carry of the sum is added to the least significant bit (LSB).

Example: Add 1110 and -1101.

1's complement of 11101 is

Case-2: Addition of positive and negative number when negative number has greater magnitude:

- Find out 1's complement of negative number
- Add with given positive number.
- There will not be any end-around carry bit, take 1's complement of the result and this result will be negative.

Example: Add 1010 and -1100 in five-bit registers.

Five-bit registers, so it will be 01010 and 11100.

1's complement of		1100 is
		10011
Now, add		01010
	+	10011
	=	11101.

Then take 1's complement of this result, which will be 00010 and this will be negative number, i.e., -00010, which is the answer.

Case-3: Addition of two negative numbers:

- Find out 1's complement for both numbers
- Add these 1's complement of numbers.
- There will always be end-around carry bit. Add this again to the LSB of result.
- Now, take 1's complement also of previous result, and this will be a negative number.

Example: Add -1010 and -0101 in five bit-register.

Five bit numbers,

So, $-1010 \rightarrow 11010$ and

-00101**→**10101

1's complement of	11010	is	10101
1's complement of	10101	is	11010
Now, add			10101
		+	11010
		=	1 01111
		+	
		_	10000.

Now take the 1's complement of this result, which will be 01111 and this number is negative, i.e, -01111, which is answer.

2's complement

Subtractions by 2's Complement

- Take 2's complement of the subtrahend
- Add with minuend
- If the result of above addition has carry bit 1, then it is dropped and this result will be positive number.
- If there is no carry bit 1, then take 2's complement of the result which will be negative
- Note that subtrahend is number that to be subtracted from the another number, i.e., minuend.

(Note that adding end-around carry-bit occurs only in 1's complement arithmetic operations but not 2's complement arithmetic operations)

Case-1: When Carry bit 1

Evaluate 10101 - 00101

So, 1's complement of subtrahend 00101	\rightarrow	11010
2's complement of subtrahend 00101	\rightarrow	11011
Now, add		10101
	+	11011
	=	1 10000.

Since, there is carry bit 1, so dropped this carry bit 1, and take this result will be 10000 will be positive number.

Case-2: When no Carry bit

Evaluate

10110 - 11010

Solution:

2's complement of 11010 is (00101 + 1) i.e. 00110. Hence

Minued -	10110	
2's complement of subtrahend -	+00110	
Result of addition -	11100	

As there is no carry over, the result of subtraction is negative and is obtained by writing the 2's complement of 11100 i.e.(00011 + 1) or 00100.

Hence the difference is - 100.

Additions by 2's Complement -

Case-1 – Addition of positive and negative number when positive number has greater magnitude:

- Find 2's complement of negative number.
- Carry bit 1 is dropped and this result will be positive number.

Example

Add 1110 and -1101.

2's complement of 1101 is

	0011	
Now, add	1110)
	+ 0011	

= 1 0001

Carry bit 1 is dropped and this result will be positive number, i.e., +0001.

Case-2 – Addition of positive and negative number when negative number has greater magnitude –

- Take 2's complement of negative number
- And add with given positive number.
- There will not be any end-around carry bit.
- Take 2's complement of the result and this result will be negative.

Example

Add 1010 and -1100 in five-bit registers.

Five bit register \rightarrow 01010 & 11100

2's complement of $11100 \rightarrow 10100$

Now, add		01010
	+	10100
	=	11110

Then take 2's complement of this result, which will be 00010 and this will be negative number, i.e., -00010, which is the answer.

Case-3 - Addition of two negative numbers -

- Take 2's complement for both numbers
- Add these 2's complement of numbers.
- Since there will always be end-around carry bit, so it is dropped.

- Now, take 2's complement also of previous result, so this will be negative number.

Example -

Add -1010 and -0101 in five bit-register.

Five bit register \rightarrow 11010 & 10101 2's complement are 10110 & 11011 Now, add 10110 + 11011 = 1 10001

Since, there is a carry bit 1, so it is dropped.

Now take the 2's complement of this result, which will be 01111 and this number is negative, i.e, -01111, which is answer.